منابع مشابه
Entropy production of diffusion in spatially periodic deterministic systems.
This paper presents an ab initio derivation of the expression given by irreversible thermodynamics for the rate of entropy production for different classes of diffusive processes. The first class is Lorentz gases, where noninteracting particles move on a spatially periodic lattice, and collide elastically with fixed scatterers. The second class is periodic systems, where N particles interact wi...
متن کاملSimple deterministic dynamical systems with fractal diffusion coefficients.
We analyze a simple model of deterministic diffusion. The model consists of a one-dimensional array of scatterers with moving point particles. The particles move from one scatterer to the next according to a piecewise linear, expanding, deterministic map on unit intervals. The microscopic chaotic scattering process of the map can be changed by a control parameter. The macroscopic diffusion coef...
متن کاملApplied Dynamical Systems London Taught Course Centre , Lectures 6 – 10 From Deterministic Chaos to Deterministic Diffusion
These are easy-to-read lecture notes for a short first-year Ph.D. student course on Applied Dynamical Systems, given at the London Taught Course Centre in Spring 2008 and 2009. The full course consists of two parts, each covering five hours of lectures. The first part by David Arrowsmith is on Basic dynamical systems, intermittency and autocorrelation. The present notes cover only the second pa...
متن کاملPersistence effects in deterministic diffusion.
In systems that exhibit deterministic diffusion, the gross parameter dependence of the diffusion coefficient can often be understood in terms of random-walk models. Provided the decay of correlations is fast enough, one can ignore memory effects and approximate the diffusion coefficient according to dimensional arguments. By successively including the effects of one and two steps of memory on t...
متن کاملFrom Deterministic Chaos to Anomalous Diffusion
2 Deterministic chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.1 Dynamics of simple maps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 2.2 Ljapunov chaos . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.3 Entropies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematical Modelling of Natural Phenomena
سال: 2014
ISSN: 0973-5348,1760-6101
DOI: 10.1051/mmnp/20149110